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We consider populations represented by random collections of real-valued points, and explore their statisti-
cal resilience to random perturbations—seeking populations whose statistics remain qualitatively unchanged
by the action of arbitrary random perturbations of a certain type. Studying a general physical perturbation
scheme, we obtain an explicit characterization of statistically resilient populations, show that these objects are
fractal, and comprehensively analyze their topological and statistical structures. An application of statistical
resilience attained is an alternative explanation of the ubiquity of power-law statistics.
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I. INTRODUCTION

Populations represented by random collections of real-
valued points—the points representing the sizes of the popu-
lation members—are abundant across the Sciences. Ex-
amples include city sizes in a given state, company sizes in a
given economy, and node degrees in a given network. Many
such populations are impacted, from time to time, by pertur-
bations: a state affected by a demographic change; an
economy affected by an industrial or technological change;
an ecological network adapting to an environmental change;
a social network adapting to a political change. The effect of
such perturbations on the impacted populations is
stochastic—resulting in a change of the underlying popula-
tion statistics. In this article we study random perturbations
of random populations, and focus on the following question:
Are there population statistics which remain qualitatively un-
changed by the action of arbitrary random perturbations of a
certain type?

To formulate this question quantitatively, consider a popu-
lation P represented by a countable collection {p;}; of points
taking values in the real range R=(r,,r*)—r, and r* denot-
ing, respectively, the ranges’s lower and upper bounds
(—o=<r,<r*<m). The population is hit by an external ran-
dom shock which perturbs its points—shifting each popula-
tion point p; to a new position p; in the range R. Thus, the
original population P={p,}, is shifted to the perturbed popu-
lation ﬁz{ﬁk}k'

Quantitative examples of perturbations PP include the
following: Shift perturbations p,=p;+&; on the real line R
=(—o0,), the shift & being real valued; multiplicative per-
turbations p,=p,;&, on either the positive half-line R
=(0,), or the negative half-line R=(-,0), the factor &
being positive valued; power-law perturbations ﬁkzpfk on
the either the ray R=(1,%), or the unit interval R=(0,1),
the exponent &, being positive valued.

In the aforementioned quantitative examples—
considering the perturbation parameters {&.}; to be indepen-
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dent and identically distributed (IID) copies of a random pa-
rameter &—our goal is to characterize the cases in which the
statistics of the perturbed population P are qualitatively
equal to the statistics of the original population P—the quali-
tative equality holding for arbitrary random perturbation pa-
rameters &.

We coin populations whose statistics are qualitatively in-
variant to the action of arbitrary random perturbations of a
certain type “statistically resilient.” A particular case of sta-
tistical resilience with respect to multiplicative perturbations
on the positive half-line was recently studied in [1], in the
context of Paretian Poisson processes. And, a particular case
of statistical resilience with respect to power-law perturba-
tions on the unit interval was recently studied in [2], in the
context of the intrinsic fractality of classic shot noise sys-
tems.

This article establishes a general theory of statistical re-
silience of random populations to random perturbations. We
consider a general physical perturbation scheme—which, in
particular, accommodates the aforementioned quantitative
examples as special cases—and study the statistical resil-
ience of random populations with respect to this scheme. The
statistically resilient populations obtained turn out to be infi-
nite objects with fractal features, and a comprehensive quan-
titative analysis of their topological and statistical structures
is presented.

An application of the general theory is an alternative ex-
planation of the ubiquity of power-law statistics [3]: In sys-
tems where growth is multiplicative and the environment is
random and ever changing, the only possible “universal
statistics”—which remain statistically resilient to the change
of times—are power laws. This explanation bears similarities
with the explanation of Zipf’s law for city sizes [4] presented
in [5], and may apply to diverse issues including the afore-
mentioned city sizes, financial market fluctuations [6], and
biological networks [7,8].

The article is organized as follows. Section II describes
the setting—the statistics of the population P, and the struc-
ture of the general perturbation scheme. The notions of sta-
tistical resilience and statistical self-similarity—with regard
to the general perturbation scheme considered—are defined
and explored, respectively, in Secs. III and IV. The renormal-
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ization and the topology of statistically resilient populations
are studied, respectively, in Secs. V and VI. Section VII ad-
dresses the special case of power-law statistics, and Sec. VIII
discusses the infiniteness of statistically resilient populations.

II. SETTING
A. Population statistics

The random population P is considered a Poisson process
on the range R with intensity N(x) (x € R) [9]. Informally,
this means that the infinitesimal interval (x,x+dx) contains a
single point with probability A (x)dx, and is empty with prob-
ability 1—\(x)dx (independently of all other infinitesimal in-
tervals). More precisely, this means that (a) the number of
points residing in an interval /CR is Poisson distributed
with mean [,\(x)dx; (b) the number of points residing in
disjoint intervals are independent random variables.

Two Poisson processes on the range R are said to be
statistically equal if they share the same intensity. We define
two Poisson processes on the range R as statistically similar
if their intensities are either equal, or differ by a multiplica-
tive factor. Statistical similarity defined here—in the context
of Poisson processes—can be regarded as a stochastic ver-
sion of geometric similarity.

Poisson processes constitute the statistical model for the
random scattering of points in general domains [9], and have
a wide spectrum of applications ranging from insurance and
finance [10] to queueing systems [11]. In recent years we
applied Poisson processes in statistical physics to (a) study
anomalous statistics displayed by nonlinear shot noise sys-
tems [12], and by linear shot noise systems with random
relaxations [13]; (b) explore fractality in the context of ran-
dom populations [14,15], and in the context of probability
laws defined on the positive half-line [16]; (c) analyze the
correlation cascades of random processes driven by Lévy
noises [17], and of nonlinear shot noise systems [18]; (d)
obtain nonlinear stochastic limit laws for random populations
[19].

In all the aforementioned research articles, the modeling
of random populations by Poisson processes turned out to
yield results which lay beyond the realm of the more con-
ventional “IID modeling”—i.e., the modeling of random
populations by IID random variables. As shall be demon-
strated below, this will also be the case in this research.

B. Perturbation scheme

The perturbation is considered to be caused by an external
force field applied to all points of the population P, for a
certain period of time. The force field propagates the points
of the population P, within the range R, according to the
ordinary differential equation (ODE) dynamics

I'(r) =vF(T(2)) (1)

(r=0). The function F(x) (x € R) represents the force field.
The parameter v (v # 0) represents the velocity of a popula-
tion point propagated by the force field.

The function F(x) is assumed positive valued. The primi-
tive of its reciprocal—a function G(x) satisfying G’(x)
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=1/F(x) (x e R)—is further assumed to be a monotone-
increasing function mapping the range R onto the real line
(—o0,0). These assumptions imply that the solution of the
ODE (1)—with initial condition I'(0)=p (p € R)—is given
by the trajectory I'(t)=G~'(G(p) +vt) (t=0). Note that if the
velocity v is positive then the trajectory I'(z) increases mono-
tonically to the range’s upper bound [lim,_,, I'(r)=r*], and if
the velocity v is negative then the trajectory I'(s) decreases
monotonically to the range’s lower bound [lim,_,,, I'(t)=r,].
Henceforth, we refer to the functions F(x) and G(x), respec-
tively, as the force function and as the generator of the per-
turbation.

While the action of the force field is considered determin-
istic, the response of the population points to the field’s ac-
tion is considered stochastic. Specifically, the velocity of the
kth population point is considered a real-valued random vari-
able V,. Hence, if the force field is applied for ¢ time units
then the kth population point is propagated to

P i) =G (G(pp) + Vi), (2)

and the entire population P is propagated to P—P,
={p(1)};. The points’ random velocities {V,}, are assumed to
be IID copies of a real-valued “generic” random velocity V.

The “displacement theorem” of the theory of Poisson pro-
cesses ([9], Sec. 5.5; see also the Appendix) implies that the
propagated population P, is a Poisson process on the range
'R. Henceforth, we denote by \,(x) (x € R) the intensity of
the propagated population P,.

III. RESILIENCE

Consider a perturbation caused by applying the external
force field for ¢ time units. The kth population point p, is thus

perturbed to p,=p,(t), the population P is perturbed to P
=P,, and the perturbed population P is a Poisson process on
the range R with intensity X(x)=h,(x) (x € R). The quanti-
tative perturbation examples given in the introduction are

special cases of the general perturbation scheme of Eq. (2)—
see Table I.

We define the population P as statistically invariant to the

perturbation’s action if the perturbed population P is statis-
tically equal to the original population PP—the statistical
equality holding for all perturbation velocities V. Analysis
shows (see the Appendix, Sec. 1) that the population P is
statistically invariant to the perturbation’s action if and only
if its intensity is of the form

c

o) 3)

)\inv(x) =
where c is a positive-valued coefficient. The invariant inten-
sities of Eq. (3) are the fixed points—with respect to all
perturbation velocities V—of the Poissonian intensity map-
ping A (x)— N(x). Note that the invariant intensities of Eq. 3)
are inversely proportional to the force function
F(x)—implying that a statistically invariant population P is
dense where the perturbing force is weak, and is sparse
where the perturbing force is strong.
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TABLE I. Representation of the quantitative perturbation examples given in the introduction as special cases of the general perturbation
scheme of Eq. (2). The details of each perturbation example p;— p; are specified: the range R of the perturbation; the force function F(x)
governing the ODE dynamics of Eq. (1); the solution trajectory I'(r), with initial condition T'(0)=p, of the ODE dynamics of Eq. (1); the
generator G(x) of the perturbation; the connection between the perturbation parameters {&}; and the perturbation velocities {V,};.

Range Force Trajectory Generator
Perturbation Di= = F(x)= I'(r)= G(x)= &=
1. Shift Pt é; (=00, 0) 1 p+ut X Vit
2. Multiplicative Piéx (0,0) X p exp(vt) In(x) exp(Vyt)
3. Multiplicative Piéi (=20,0) -X p exp(-vt) —In(-x) exp(=Vyt)
4. Power law pfk (1, =) x In(x) pexp(v) In[In(x)] exp(Vit)
5. Power law pf" 0, 1) —x In(x) pexp(-vt) —In[-In(x)] exp(=Vyt)

We define the population P as statistically resilient to the

perturbation’s action if the perturbed population P is statis-
tically similar to the original population P—the statistical
similarity holding for all perturbation velocities V. Analysis
shows (see the Appendix, Sec. 1) that the population P is
statistically resilient to the perturbation’s action if and only if
its intensity is of the form

Ares() = —— exp[eG(x)],

o) (4)

where ¢ is a positive-valued coefficient, and where € is a

real-valued exponent. Moreover, if A(x)=X,(x) then X\(x)
=(exp(—&tV))\os(x). Namely, the multiplicative factor by

which the intensity of the perturbed population P differs

from the intensity of the original population P is given by
(exp(—&tV))—the moment generating function of the pertur-
bation velocity V, evaluated at the point —et. The resilient
intensities of Eq. (4) are the eigenintensities—with respect to
all perturbation velocities V—of the Poissonian intensity
mapping A(x)~>X\(x) (which is a linear mapping).

Comparing the characterizations of statistical invariance
and statistical resilience obtained, we conclude that the
former is a special case of the latter, corresponding to the
zero-exponent case £=0. The intensities of statistically in-
variant and statistically resilient populations—in case of the
quantitative  perturbation examples given in the
introduction—are presented in Table II.

The motivation behind the aforementioned definitions of
statistical invariance and statistical resilience is the follow-
ing. The type of the perturbation—represented by the exter-
nal force field, and governed by the perturbation generator
G(x)—depends on the underlying physics of the system con-
sidered (accommodating the population P), and is fixed and
deterministic. The response of the population members to the
perturbation—quantified by the perturbation velocity
V—varies from perturbation to perturbation, and is random.
Thus, in order to characterize statistical invariance and sta-
tistical resilience—to the action of a certain type of
perturbation—we need do so with respect to all possible per-
turbation velocities V.

IV. SELF-SIMILARITY

Consider the general perturbation scheme of Eq. (2), and
observe the population P as it is propagated in time—
yielding the population trajectory {P,;r=0}. We define the
population P as statistically self-similar with respect to the
perturbation’s action if all propagated populations {P,},~ are
statistically similar to each other. Analysis shows (see the
Appendix, Sec. 1) that the population P is statistically self-
similar with respect to the perturbation’s action if and only if
its intensity admits the resilient form \(x)=\.(x) of Eq.
(4)—in which case the intensity of the z-propagated popula-
tion P, is given by \,(x)=(exp(—&tV))\ ¢s(x).

Combining this result together with the result of the pre-
ceding section we conclude that the population P is statisti-
cally resilient to the perturbation’s action if and only if it is

TABLE II. The intensities \j,,(x) and renormalization functions Ry(x) of statistically invariant popula-
tions, and the intensities \,.(x) and renormalization functions Ry(x) of statistically resilient populations—in
the cases of the quantitative perturbation examples given in Table I.

Invariance Renormalization Resilience Renormalization
Perturbation Ny (%)= Ri(x)= Npes()= Ri(x)=
1. Shift c kx ¢ exp(ex) x+ In(k)/e
2. Multiplicative cx! X cx®! xk!/e
3. Multiplicative c(=x)7! —(=x)k c(=x)&! xkVe
4. Power law c[In(x)]'x~! exp[In(x) ¥ c[In(x)]e~ %! i
5. Power law c[-In(x)]"'x7! exp—[—In(x)]¥ c[-In(x)]#"x7! N

011103-3



IDDO ELIAZAR AND JOSEPH KLAFTER

statistically self-similar with respect to the perturbation’s ac-
tion. Hence, the notions of statistical resilience and statistical
self-similarity coincide. The notion of statistical resilience,
however, is conceptually static—whereas the notion of sta-
tistical self-similarity is applicable to both static and dy-
namic settings.

We considered a static setting in which at time 0 we were
given a static input—the population P—that was thereafter
propagated by the action of the external force field. Consider
now a counterpart dynamic setting in which the population
points are introduced dynamically in time, rather than being
all statically present at time 0. Specifically, consider the fol-
lowing shot noise system model—whose setting is analogous
to the static setting of Sec. II, and which is based on the
nonlinear shot noise system model presented in [12].

Shots of random magnitudes arrive to the system—yvia an
external Poissonian inflow—stochastically in time. Shot
magnitudes take values in the real range R, and shots of
magnitude x arrive with Poissonian inflow intensity N(x) (x
€ R). A shot arriving to the system is propagated by the
ODE dynamics of Eq. (1), with random velocity V. Thus, a
shot of magnitude x, 7 time units after having arrived to the
system, is propagated to the random position G~'(G(x)
+ V7). The shots are propagated independently of each other,
i.e., the shots’ velocities are IID random variables.

The shot noise system is initiated at time 0. At time 7 (¢
>0) the shots present in the system—originating from shots
arriving to the system during the time interval [0,7], and
propagated by the ODE dynamics of Eq. (1)—form a popu-
lation of shots S; scattered randomly across the range R. The
“displacement theorem” of the theory of Poisson processes
([9], Sec. 5.5; see also the Appendix) implies that the shot
population S, is a Poisson process on the range R, and we
denote its intensity by 7,(x) (x e R).

We define the shot noise system as statistically self-
similar if all shot populations {S,},~ are statistically similar
to each other. Analysis shows (see the Appendix, Sec. 2) that
the shot noise system is statistically self-similar if and only if
its inflow intensity admits the resilient form \(x)=N\(x) of
Eq. (4)—in which case (a) the intensity of the shot popula-
tion S, is given by 7,(x)=a(t)\(x); (b) the self-similarity
factor a(r) is given by

t if e=0,

a(t)=3/ 1 -exp(-1eV) et 0 (5)
eV

(t>0). Hence, we conclude the following: Be the setting
static or dynamic—statistical self-similarity is characterized
by the statistically resilient intensities \,.(x) of Eq. (4).

V. RENORMALIZATION

We turn now to study the renormalization of statistically
resilient populations, and do so using the Poissonian renor-
malization scheme introduced in [14] (devised there in order
to explore fractality in the context of Poisson processes).

Consider a random population P on the range R. The k
superposition of the population P is the union population
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P,U---UP,, where the populations P,,---,P, are k IID
copies of P. We seek a k-order renormalization function
Ri(x) (x € R)—a monotone increasing function which maps
the range R onto itself—for which the renormalized popula-
tion

P(k) = {Rk(p)}pePIU"'UPk (6)

is statistically equal to the population P. Namely, we seek a
k-order shift p—R,(p) of the k-superposition population
points (p € PyU -+~ UP,) that will statistically retrieve the
initial population P.

Analysis shows (see the Appendix, Sec. 3) that if the
population P is statistically resilient to the perturbation’s
action—its intensity admitting the resilient form A, (x) of
Eq. (4)—then the function

G '(kG(x)) ife=0,

Ry(x) = In(k)

G—'(G(x) + T) ife#0 M
is a k-order renormalization function. Note that the renormal-
ization functions of Eq. (7) satisfy the composition rule
Rkl(sz(x))=Rklk2(x) (ky,ky=1,2,...). This composition rule
implies that the renormalization obtained is self-consistent: A
k,-order renormalization followed by a k,-order renormaliza-
tion is identical to a k k,-order renormalization.

The renormalization functions of statistically resilient
populations—in the cases of the quantitative perturbation ex-
amples given in the introduction—are presented in Table II.

VI. TOPOLOGY

The intensities N (x) of statistically resilient populations
are nonintegrable over the range R. Namely, [ . (x)dx
*

=cc. This nonintegrability implies that statistically resilient
populations are infinite and non-IID objects: A statistically
resilient Population consists of infinitely many points which
do not form a collection of IID random variables. The “non-
[ID” structure of statistically resilient populations renders the
results obtained in this research beyond the realm of IID
modeling.

The topological structure of statistically resilient popula-
tions turns out to be determined by the sign of their exponent
g, and can be either double sided, increasing, or decreasing.

Double-sided topology. In this case (a) The exponent ¢ is
zero; (b) the intensity N, (x) is integrable neither at the lower
bound r,, nor at the upper bound r*; (c) the population
points can be ordered monotonically via a double-sided se-
quence of order statistics - <O_,<O0_;<0,,<0,<--"
which diverge to the range’s lower and upper bounds:
lim,_,_, O,=r, and lim,_,., O,=r*.

Increasing topology. In this case (a) the exponent & is
positive; (b) the intensity A, (x) is integrable at the lower
bound r,, and nonintegrable at the upper bound r*; (c) the
population points can be ordered monotonically via an in-
creasing sequence of order statistics O;<0,<03<-:-
which diverge to the range’s upper bound: lim,_,., O,=r".

Decreasing topology. In this case (a) The exponent & is
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negative; (b) the intensity N, (x) is nonintegrable at the
lower bound r,,, and integrable at the upper bound r*; (c) the
population points can be ordered monotonically via a de-
creasing sequence of order statistics -+ <03;<0,<0;
which diverge to the range’s lower bound: lim,_,., O,=r,.

Parametrizing statistically resilient populations—with a
common perturbation generator G(x)—by their exponent &,
we obtain that a topological phase transition takes place at
the exponent value £=0. At this critical value the population
points accumulate at both the lower bound r, and upper
bound r*. In the exponent range £ <0 accumulation holds
only at the lower bound r,, whereas in the exponent range
&£>0 accumulation holds only at the upper bound r*.

In the reminder of this section we address additional is-
sues regarding the topological structure of statistically resil-
ient populations: Extreme points, simulation of the order sta-
tistics, and the inverse problem.

A. Extreme points

Statistically resilient populations with nonzero exponents
(¢ #0) posses an extreme point—the order statistic O;. This
order statistic is the population’s minimal point in the expo-
nent range € >0, and is the population’s maximal point in the
exponent range £<0. Analysis shows (see the Appendix,
Sec. 4) that the probability law of the extreme point O, is
given by

( c ) P(O,>x) if e>0,
xp kﬁmbG@ﬂ"P«hs@ fe<o O
(xeR).

Both the statistically resilient intensity A (x) of Eq. (4),
and the extreme probability law of Eq. (8) are uniquely de-
termined by the perturbation generator G(x)—this fact im-
plying a one-to-one correspondence between these two func-
tions. The one-to-one correspondence, in turn, establishes an
extremal characterization of statistically resilient popula-
tions. In case of the quantitative perturbation examples given
in the introduction the extremal characterization is as fol-
lows: (1) Shift perturbations on the real line—Gumbel
maxima; (2) multiplicative perturbations on the positive half-
line—Fréchet maxima; (3) multiplicative perturbations on
the negative half-line—Weibull maxima; (4) power-law per-
turbations on the ray (1,%)—Hyper-Pareto minima; (5)
power-law perturbations on the unit interval—Hyper-beta
maxima.

B. Simulation of the order statistics

The simulation of the sequence of order statistics of sta-
tistically resilient populations is given by the following
Monte Carlo algorithm:

lGumbel, Fréchet, and Weibull are the extreme-value probability
laws of extreme value theory—the only possible stochastic limit
laws of affine-scaled maxima of sequences of IID random variables
[20]. Hyper-Pareto and Hyper-beta are nonlinear fractal probability
laws [16].
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*1

0+11=G_1(T[5+1+ +5+n]> ife=0,

I )
On:G‘l[— ln(—[é’] + oo +<€’n]>} ife#0

€ c

(n=1,2,...), where {-.,€,,E,.E,1.E0,"'} and
{€,,&,, -} are sequences of independent and exponentially
distributed random variables with unit mean.

The simulation algorithm of Eq. (9) is easily implement-
able and highly efficient. Moreover, from this simulation al-
gorithm it is straightforward to obtain, in closed form, the
probability law of each order statistic. The proof of the simu-
lation algorithm is analogous to the proof of Proposition 1 in

[21].

C. The inverse problem

So far we considered the general perturbation scheme of
Eq. (2) as given, and deduced the properties of the corre-
sponding statistically resilient populations. In this section we
consider the inverse problem—in which a statistically resil-
ient population is observed, and the underlying perturbation
scheme is to be deduced. Specifically, we are given the in-
tensity A (x) of a statistically resilient population, and wish
to infer the perturbation’s force field—i.e., the force function
F(x) governing the ODE dynamics of Eq. (1).

Analysis shows (see the Appendix, Sec. 4) that the force
function F(x) is given—up to a multiplicative factor—by the
following topology-contingent reconstruction formula:

(

1

if e=0,
Ares(%)
1 o ! !
F(x) = < )\res(x)J; )\res(x )dx ife>0, (10)
: fﬁh(’w’ if e <0
es(x)dx" if e
L )\res(x) x

[the & classification regards the topology of the statistically
resilient population observed—double-sided (¢=0), increas-
ing (£>0), or decreasing (£<0)]. The reconstruction for-
mula of Eq. (10) is also a reverse-engineering formula: It
specifies the underlying dynamics required—represented by
the force function F(x)—in order to yield a statistically re-
silient population with predesired intensity A.(x).

VII. POWER-LAW STATISTICS

Power-law statistics—manifesting a power-law connec-
tion between measurements and their occurrence
frequencies—are abundant and ubiquitously observed across
the Sciences. Examples range from web sites and book sales
to moon-crater diameters and earthquake magnitudes [3].

In the context of integer-valued measurements, power-law
statistics are often referred to as “Zipf’s law”—named after
the linguist George Kingsley Zipf who observed such statis-
tics in word frequencies [22]. If X is an integer-valued mea-
surement, then Zipf’s law is characterized by power-law sta-
tistics of the form P(X=n)=[1/{(v+1)] n """ (n=1,2,...),
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where v is a positive-valued exponent, and where () de-
notes the ¢ function.

In the context of positive-valued measurements, power-
law statistics are often referred to as “Pareto’s law”—named
after the economist Vilfredo Pareto who observed such sta-
tistics in income distributions [23]. If X a positive-valued
measurement, then Pareto’s law is characterized by power-
law statistics of the form P(X e dx)=wl")x""'dx (x>1),
where v is a positive-valued exponent, and where [ is a
positive-valued lower bound.

Note that in both Zipf’s and Pareto’s laws the exponent v
is restricted to the positive range—in order to ensure normal-
ization (i.e., probabilities summing up to unity). Moreover, in
Pareto’s law normalization further requires the presence of a
lower bound—a ““cutoff” prohibiting the measurement from
ranging over the entire positive half-line (0,).

A population of positive-valued measurements can be
modeled either as a sequence of IID random variables, or as
a Poisson process. In the former case power-law statistics are
represented by Pareto’s law; in the latter case they are rep-
resented by power-law intensities of the form \(x)=cx®"!
(x>0), where ¢ is a real-valued exponent, and where c is a
positive-valued constant. The Poissonian modeling—in sharp
contrast to the IID modeling—does not require normaliza-
tion: The intensity A(x) need not be integrable over the posi-
tive half-line. Hence, in the Poissonian modeling (a) the ex-
ponent € is real valued—in contrast to the positive-valued
Paretian exponent v; (b) the measurements range over the
entire positive half-line—no lower bound cutoff [ is required.

We already encountered power-law intensities of the form
A(x)=cx*"! (x>0). Indeed, in the case of multiplicative per-
turbations on the positive half-line we obtained that \,.(x)
=cx®7! (x>0) (Table II, second example). On the other
hand, setting A, (x)=cx®*~! (x>0) into the reconstruction
formula of Eq. (10) yields the force function F(x)=x (x
>(0)—corresponding to multiplicative perturbations on the
positive half-line. Thus, in the context of Poisson processes
on the positive half-line, we conclude that power-law statis-
tics characterize statistical resilience with respect to multi-
plicative perturbations.

This conclusion is an alternative explanation of the preva-
lence and ubiquity of power-law statistics across the Sci-
ences: In systems where growth is multiplicative and the en-
vironment is random and ever changing, the only possible
“universal statistics”—which remain statistically resilient to
the change of times—are power laws. The quintessential ex-
ample of such systems are financial markets—which indeed
exhibit power-law statistics [6]. An explanation similar in
spirit—in the context of Zipf’s law for city sizes [4]—is
presented in [5].

VIII. DISCUSSION

As noted already, statistically resilient populations are in-
finite objects consisting of infinitely many points. In reality
however, populations—cities in a given state, companies in a
given economy, nodes in a given network, etc.—are always
finite objects. We turn now to discuss this discrepancy.

Fractal objects—be they deterministic or stochastic—are,
by definition, infinite objects. Indeed, a fractal object is char-
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acterized by some kind of self-similarity ranging over all
scales [24]. This implies that in order to facilitate the notion
of self-similarity, an infinite range of scales is implicitly re-
quired.

As a deterministic example, consider the Koch
snowflake—the snowflake-shaped domain whose boundary
is the Koch curve [25]. The Koch snowflake is the aggregate
of infinitely many triangles scaling down in size. This infinite
aggregate is necessary a structure for the geometric self-
similarity of the Koch snowflake.

As a stochastic example, consider Brownian motion—the
jagged random trajectory of diffusive motion [26]. Brownian
motion is a random superposition of infinitely many func-
tions scaling down in size [27]. This infinite superposition is
necessary a structure for the statistical self-similarity of
Brownian motion.

Yet, in reality, neither snowflakes nor diffusion trajecto-
ries are infinite objects. In reality, Physics always imposes a
lower-bound resolution level, or “cutoff.” The Koch curve
and Brownian motion are mathematical idealizations—based
on the notion of “self-similarity over all scales”—of finite
real-world objects. Statistically resilient populations should
be understood in the very same way: Mathematical
idealizations—based on the notion of statistical
resilience—of finite real-world populations.

This is well exemplified by the statistical power laws ob-
served in city sizes [4] and in financial market fluctuations
[6]. Would the underlying populations be infinite, then
power-law statistics would be observed on all scales. Yet,
power-law statistics are observed only at the “upper tail” of
the empirical distribution—i.e., above a cutoff induced by
the finiteness of real-world populations.

So why bother with infinite populations in the first place?
To understand fractals the notion of self-similarity was
introduced—a mathematical idealization which implicitly as-
sumes infinitely many scales. The very same thing takes
place in this research: To understand statistical structures
which withstand random perturbations we introduced the no-
tion of statistical resilience—a mathematical idealization
which implicitly assumes infinite populations. In both ideali-
zations infiniteness is required in order to facilitate our math-
ematical definition and understanding. Having gained the
mathematical insight, we can “get back to reality” using a
physical cutoff.

Equation (10) reconstructs the force function F(x) of the
perturbation scheme underlying a given statistically resilient
population, based on the population’s statistically resilient
intensity \(x). Consider now the reconstruction of the
force function F(x) based on an empirical observation—
consisting of finitely many points—of the statistically resil-
ient population. The empirical reconstruction of the force
function F(x) is given by the function 1/S’(x) where S’ (x) is
the derivative of the function S(x) which, in turn, is con-
structed from the empirical data as follows:

Double-sided topology. In this case (a) the empirical ob-
servations are restricted to the subrange (/,u), where [ is a
lower-bound cutoff and u is an upper-bound cutoff (r, </

<u<r*); (b) set N(x) to be the number of population points
observed below the level x (I<x<u); (c) set S(x) to be
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smoothening of the function N(x)/N(u) (I<x<u).

Increasing topology. In this case (a) the empirical obser-
vations are restricted to the subrange (r,,u), where u is an
upper-bound cutoff (r, <u<r*); (b) set N(x) to be number
of population points observed below the level x (r, <x<u);
(c) set S(x) to be smoothening of the function In[N(x)/N(u)]
(r.<x<u).

Decreasing topology. In this case (a) the empirical obser-
vations are restricted to the subrange (I,r*), where [ is a
lower-bound cutoff (r, <I<r*); (b) set N(x) to be the num-
ber of population points observed above the level x (I<x
<r*); (c) set S(x) to be a smoothening of the function
—In[N(x)/N()] (I<x<r¥).

IX. CONCLUSION

We considered general populations represented by real-
valued Poisson processes, perturbed by the general physical
perturbation scheme of Eq. (2). Within this setting, the no-
tions of statistical resilience and statistical self-similarity
were introduced, and the classes of statistically resilient and
statistically self-similar populations were characterized.
These population classes were shown to coincide, and their
topological and statistical structures were comprehensively
analyzed. We concluded with a specific application of the
general theory: An alternative explanation of the ubiquity of
power-law statistics.

APPENDIX

Henceforth, the acronym PDF stands for “probability den-
sity function.” In the proofs we shall use the “displacement
theorem™ of the theory of Poisson processes ([9], Sec. 5.5):

Let II be a Poisson process on a Euclidean domain X with
intensity A(x) (x € X), and let ) be another Euclidean do-
main. Transform each point of the process [I—independently
of all other points—as follows: If located at x, transform it to
the random point Y, € Y, where P(Y, e dy)=y(x;y)dy.> Set
IT to be the set of transformed points. Then, IT is a Poisson
process on a Euclidean domain )’ with intensity

X@=fxuwwww ved. (A1)
X
1. Resilience and self-similarity
Consider the stochastic map
x— Y, =G (Gx)+ Vi) (A2)

where (i) ¢ is a positive parameter (time), and V is a real-
valued random variable (the generic velocity) with PDF
Jy(v) (v real); (ii) the deterministic input point x and the
random output point Y, are in the range R. A straightforward
calculation implies that the PDF of the random output point
Y, is given by

%For each x € X the function Y(x;-) is a PDF on ).
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(yeR).

aw—an)l (A3)

t tF(y)

The aforementioned displacement theorem of the theory
of Poisson processes implies that if the population P is a
Poisson process with intensity A(x) (x € R) then the popula-
tion P, is a Poisson process with intensity

x;y) = t!fv(

N(y) = J AN (x;y)dx (y e R). (A4)
R

Substituting the PDF of Eq. (A3) into Eq. (A4), using the
change of variables v=[G(y)-G(x)]/t, and setting H(6)
=NG(O)F(GT'(0) and H(O)=N(G(O)HFG'(0)) (0
real), we obtain that

HI(G(y))=f H(G(y) —vt)p(v)dv  (y € R).

(AS)

Statistical resilience holds if and only if A\, (x)=m\(x) (x
€ R), where m is a multiplicative factor dependent on the
time parameter ¢ and on the random velocity V. In turn,
N (x)=mA(x) (x e R) holds if and only if H,(6)=mH(6) (6
real). Equation (A5), however, implies that H,(6)=mH(6)
can hold if and only if the function H is an exponential
H(6)=c exp(e6) (0 real; ¢ positive, & real)—in which case
Ax) =N s(x) (x € R) and m=(exp(—erV)). Statistical invari-
ance is a special case of statistical resilience, corresponding
to £=0.

Statistical self-similarity holds if and only if \,(x)
=a(t)\(x) (xe R, r>0), where a(z) is a multiplicative fac-
tor dependent on the time parameter ¢ and on the random
velocity V. In turn, \,(x)=a(t)\;(x) (x e R, r>0) holds if
and only if H(0)=a(t)H,(6) (6 real, t>0). Equation (A5),
however, implies that H,(6)=a(r)H,(6) can hold if and only
if the function H is an exponential H(6)=c exp(g6) (6 real; ¢
positive, & real)}—in which case \,(x)=\,(x) (x e R) and
a(t)=(exp(-&tV)).

2. Shot noise
Consider the stochastic map

(5.0 ¥y = GG+ Vi-5)  (A6)

where, (i) ¢ is a positive parameter (time), and V is a real-
valued random variable (the generic velocity) with PDF
Yy(v) (v real); (ii) 0<s<r, xe R, and Y, ) € R. The sto-
chastic map of Eq. (A6) represents the random magnitude
Y (s, at time 7, of a shot with initial magnitude x, arriving to
the system at time s. A straightforward calculation implies
that the PDF of the random magnitude Y, ) is given by

mw—aw) 1
(t—$)F(y)

Ty (yeR).

(s, x;y) = ¢v(

(A7)

The aforementioned displacement theorem of the theory
of Poisson processes implies that if shots of magnitude x
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arrive with Poissonian inflow intensity A(x) (x € R) then the
shot population S, is a Poisson process with intensity

n(y) = f f Nx) (s, x;9)dxds  (y € R,t>0).
0YR

(A8)

Substituting the PDF of Eq. (A7) into Eq. (A8), using the
change of variables v=[G(y)-G(x)]/(t—=s) and u=(t-s),
and setting  H(O)=NG'(0))F(G'(A) and H,6)
=G 1(0))F(G™'(6)) (6 real), we obtain that

H,(G(y))=f f H(G(y) —vu)p(v)dvdu (y € R,t>0).
0YJ-—»

(A9)

Statistical self-similarity holds if and only if 7,(x)
=a(t)n(x) (xe R, t>0), where a(r) is a multiplicative fac-
tor dependent on the time parameter ¢t and on the random
velocity V. In turn, %,(x)=a(t)7;(x) (xe R, t>0) holds if
and only if H,(60)=a(r)H,(6) (6 real, t>0). Equation (A9),
however, implies that H,(6)=a(r)H,(6) can hold if and only
if the function H is an exponential H(6)=c exp(e6) (freal; ¢
positive, & real)—in which case \,(x) =\, (x) (x € R) and

a(t) =f (exp(— euV))du (t>0). (A10)
0

Equation (A10), in turn, yields Eq. (5).
3. Renormalization

Combining together the “superposition theorem” ([9],
Sec. I B) and the aforementioned displacement theorem of
the theory of poisson processes, implies that if the population
P is a Poisson process with intensity A(x) (x € R) then the
population P® is a poisson process with intensity

MR (x
A0 (x) =k,(+l()) (xeR).
Ry (R (1))
Let A(x) (xeR) be a primitive of the intensity \(x) [i.e.,
A'(x)=\(x)], and set

Ri(x) = A7 (kA (x))

(A11)

(xeR). (A12)

It is straightforward to check that substituting the function of
Eq. (A12) into Eq. (A11) yields A%)(x)=\(x)—implying that
the population P¥ is statistically equal to the population P.
Hence, the function of Eq. (A12) is a renormalization func-
tion.

A primitive of the statistically resilient intensity A, (x)
(xeR) of Eq. (4) is

cG(x) if e=0,

Ares(x) = (A13)

< exp(eG(x)) ife#0
e

(x e R). Substituting Eq. (A13) into Eq. (A12) yields the
renormalization function of Eq. (7).
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4. Extremes and inversion

Double-sided topology. Consider the case e=0. Equation
(10) (case £=0) follows trivially from Eq. (3).

Increasing topology. Consider the case £>0, and note
that

f N e()dx’ = 2 expleG)] (xeR). (Al4)

Ty

In this case the population’s minimal point O, is greater than
the level x (x € R) if and only if the population has no points
in the subrange (r,,x]—an event occurring with probability

exp(— fx )\res(x')dx’).

ES

(A15)

Combining together Egs. (Al14) and (A15) yields Eq. (8)
(case €>0). Equation (A14) also implies that

Glx) = i 1n(§fx )\res(x’)dx’> (xeR). (Al6)

Differentiating equation (A16) further implies that

! Ares(X)
=c
F(x) f)rc*)\res(x,)dx,

xeR), (A17)

which, in turn, yields Eq. (10) (case € >0).
Decreasing topology. Consider the case <0, and note
that

f r Moo )’ = — g expleG()] (xeR). (A18)

In this case the population’s maximal point O, is no greater
than the level x (x € R) if and only if the population has no
points in the subrange (x,r*)—an event occurring with prob-

ability
exp(— f )\res(x’)dx’> .

Combining together Egs. (A18) and (A19) yields Eq. (8)
(case £<<0). Equation (A19) also implies that

(A19)

Gx) = é ln<— E f ' )\res(x’)dx') (xeR). (A20)

Differentiating Eq. (A20) further implies that

1 )\res(x)
=c—
F(x) 7 N eo(x")dx’

(xeR), (A21)

which, in turn, yields Eq. (10) (case £ <0).

011103-8



STATISTICAL RESILIENCE OF RANDOM POPULATIONS...

[1] I. Eliazar and J. Klafter, J. Stat. Phys. 131, 487 (2008).

[2] I. Eliazar, Phys. Rev. E 77, 061103 (2008).

[3] M. E. J. Newman, Contemp. Phys. 46, 323 (2005).

[4] F. Auerbach, Petermanns Geographische Mitteilungen 59, 74
(1913).

[5] X. Gabaix, Q. J. Econ. 114, 739 (1999).

[6] X. Gabaix, P. Gopikrishnan, V. Plerou, and H. E. Stanley, Na-
ture (London) 423, 267 (2003).

[7] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A. L. Bara-
basi, Nature (London) 407, 651 (2000).

[8] H. Jeong, S. Mason, A. L. Barabasi, and Z. N. Oltvai, Nature
(London) 411, 41 (2001).

[9] J. F. C. Kingman, Poisson Processes (Oxford University Press,
Oxford, 1993).

[10] P. Embrechts, C. Kluppelberg, and T. Mikosch, Modelling Ex-
tremal Events for Insurance and Finance (Springer, New York,
1997).

[11] R. W. Wolff, Stochastic Modeling and the Theory of Queues
(Prentice-Hall, London, 1989).

[12] I. Eliazar and J. Klafter, Proc. Natl. Acad. Sci. U.S.A. 102,

PHYSICAL REVIEW E 79, 011103 (2009)

13779 (2005).

[13] L. Eliazar, Phys. Rev. E 76, 041128 (2007).

[14] 1. Eliazar and J. Klafter, Physica A 383, 171 (2007).

[15] L. Eliazar, Physica A 386, 318 (2007).

[16] I. Eliazar and J. Klafter, Phys. Rev. E 77, 061125 (2008).

[17] L. Eliazar and J. Klafter, J. Phys. A 40, F307 (2007).

[18] I. Eliazar and J. Klafter, Phys. Rev. E 75, 031108 (2007).

[19] I. Eliazar and J. Klafter, Physica A 387, 4985 (2008).

[20] J. Galambos, Asymptotic Theory of Extreme Order Statistics,
2nd ed. (Krieger, New York, 1987).

[21] L. Eliazar, Prob. Eng. Inform. Sci. 19, 289 (2005).

[22] G. K. Zipf, Human Behavior and the Principle of Least Effort
(Addison-Wesley, Cambridge, 1949).

[23] V. Pareto, Cours D’Economie Politique (Droz, Geneva, 1896).

[24] B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman,
New York, 1982).

[25] H. von Koch, Arkiv for Matematik 1, 681 (1904).

[26] A. Einstein, Ann. Phys. 17, 132 (1905).

[27] N. Wiener, J. Math. Phys. (Cambridge, Mass.) 2, 131 (1923).

011103-9



